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1. Introduction

In manufacturing applications, the potential of models and
simulations for optimization based on digital twins (DT) is not
fully exploited due to their computational requirements and the
expert knowledge needed to operate them. Therefore, relevant
physical effects in industrial practice are either neglected or
only approximated by rough estimates. As a result, the quality
of the DT and the insights and decisions derived from this suf-
fer significantly, which leads in many cases to significant eco-
nomic disadvantages. [1] In this context, the Fraunhofer IPT
has been developing a domain-specific DT framework for ma-
chining, called dPart®, for several years. It comprises data ac-
quisition, processing, and analysis methods embedded in an
Industrial-Internet-of-Things (IIoT) infrastructure (Fraunhofer

Edge Cloud) for the targeted analysis and optimization of ma-
chining processes. [2] The following investigated simulation is
embedded in the mentioned DT framework. With the advent
of Quantum Computing (QC), a new tool with high optimiza-
tion potential comes into focus. Mathematically it was shown
that simulations with given accuracy allow polynomial and in
certain cases even exponential acceleration (based on the Har-
row, Hassidim, and Lloyd (HHL) algorithm) [3]. A potential
application for QC in manufacturing simulation is presented in
the machining simulation of multi-axis milling of thin-walled
aerospace components like integral compressor-rotors (blade
integrated disks (blisks)). Blisks represent one of the most chal-
lenging components in turbomachinery manufacturing [4]. Due
to the high aspect ratio of the blade geometry resulting in low
workpiece rigidity, various effects such as deflection and chat-
ter can occur during the machining process [5]. If vibrations
occur during machining, it is often difficult for the operator to
locate the cause. To avoid vibration issues, very conservative
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process parameters, such as reduced feed, cutting speed, cut-
ting depth, and cutting width, are often used. The selection of
an advantageous spindle speed for the present machining case
is established based on stability diagrams. For the prediction of
the process stability and thus for the generation of the stabil-
ity diagrams, information about cutting force, dynamics of the
total system (superposition of tool and workpiece dynamics),
process parameters, and tool geometry is required. [6]

In this paper, the workflow of the coupled technology models
used in process simulation is presented in section 2. Then, two
possible applications of QC out of the simulation workflow in
subsection 2.1 and 2.2 are extracted. In section 3, the approach
for enhancing the dynamics simulation of multi-axis milling of
thin-walled aerospace components with quantum algorithms is
described on the basis of linear coupled oscillators in detail.
Moreover, in section 4 and 5 the quantum emulation as proof of
concept is summarized so far and reveals the roadmap with the
next steps to apply in the process design and optimization for
an industrial thin-walled aerospace component.

2. Milling dynamics simulation workflow

The FEM simulation workflow (Figure 1), originally pub-
lished by Rudel et. al., is briefly summarized below for a better
understanding. It shows the detailed sequence of inputs, meth-
ods, and variables involved in calculating the virtual represen-
tation of the dynamic process behavior. The user programs the
toolpath for the milling operation in the first step. Necessary
inputs for the dexel-based engagement simulations are the NC
path, the stock geometry of the workpiece, and the tool geome-
try such as diameter D, number of teeth Nth, and helix angle λ.
The NC path contains all relevant cutting parameters like axial
stepover ap, radial stepover ae, feed per tooth fz, and spindle
speed n. It is also necessary to select discrete Cutter Locations
(CLs) for which the Finite-Element (FE) modal analysis should
be performed in the following steps. Since a single toolpath
consists of several thousand points, the simulation of all CLs
of the toolpath is not realistic in terms of computational time
and intensity. [6] In order to calculate the engagement angles
between tool and workpiece on the one hand, and to extract CL-
dependent In-Process-Workpieces (IPWs) on the other hand, a
dexel-based engagement simulation was then executed. More-
over, the user needs to define material properties, e.g. density
ρ; Young‘s Modulus E; Poisson’s ratio ν, and boundary con-
ditions, e.g. constraints or friction; in order to run FE modal
analysis and obtain CL-dependent Frequency Response Func-
tions (FRFs). In addition to the number of selected CLs, for
the FE modal analysis of the selected CL resolution, the com-
putational effort also scales exponentially with the number of
FE mesh nodes, the selected node resolution, and model size
[7, 8]. Additionally, it is also decisive how many of the rele-
vant eigenmodes are considered during the FE modal analysis.
In the presented case, the simulation was limited to the first six
eigenmodes [9]. Furthermore, specific cutting force coefficients
need to be defined to execute a dual-mechanistic cutting force
simulation and to obtain the process-related cutting force Fc.

Fig. 1. FEM simulation workflow based on Rudel et. al. [6]

Knowing the position-dependent cutting force and FRFs, stabil-
ity diagrams can be generated to select suitable spindle speeds
to avoid vibrations during the milling process. [6, 9, 10]

The FEM simulations workflow (Figure 1) includes analyt-
ical and numerical models. Determination of the relative time
required for each step, for a finishing operation at a simplified
blade geometry (Figure 2 (a)) showed that the analytical mod-
els were negligible in terms of their computing time (see Ta-
ble 1, computer specifications: Intel® Xeon® Gold-5118 2.30
GHz CPU, 24 cores, 380 GB RAM). Note that the computa-
tional time of simulation tasks related to the IPW, e.g. the FE
workflow, highly scales with the defined number of cutter lo-
cations. As an example, selecting 200 CLs for one operation
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Table 1. Measured relative time effort for each simulation step

Simulation steps Relative time (%)

Dexel-based engagement simulation 77
Analytical force simulation 3
Numerical FE workflow 18
Analytical stability diagram calculation 2

results in a time effort of 4400 seconds. Both analytical meth-
ods, force and stability simulation in the milling dynamics sim-
ulation workflow, are less computationally extensive compared
to the dexel-based engagement simulation and the FE work-
flow. This disadvantage of numerical simulation has been elab-
orated on in previous scientific works [11]. For the use case of
finishing in blisk milling, the volume of the removed chip is
very small. High resolution is required to calculate the engage-
ment precisely leading to a very small dexel size, which neg-
atively affects the computational time. However, with the help
of suitable quantum algorithms (e.g. the HHL-Algorithm), it is
assumed that the computation time will be exponentially accel-
erated compared to classical algorithms on classical computers
[12]. Analogous behavior applies to the FE modal analysis. Due
to the complexity of numerical methods, only discrete cutter lo-
cations are currently modeled and considered in the simulation
of manufacturing processes. Both methods show the potential
to bring advantages in the field of milling dynamics simulation
by using quantum algorithms. The two methods are further dis-
cussed in the following subsections 2.1 and 2.2.

2.1. Dexelsimulation

Within the dPart® framework, the engagement simulation
is a dexel-based simulation. The main components of a dexel
model are a structured two-dimensional grid on a plane that
serves as a nail coordinate system (1), nails, perpendicular to
the coordinate system’s plane located at the intersection points
of the grid (2), and a subset defined by the intersection points
between the nail and the volume that is represented by the nails
(3). A three-dimensional volume is discretized using three or-
thogonal depth fields aligned with the axes of a cartesian co-
ordinate system, an example is shown in Figure 2 (b). The en-
gagement simulation provides the tool’s contact area, contact
length, and width. It also allows tracking removed volume and
tool cutting direction to enable an evaluation of the workpiece
cut by cut. The algorithm calculates all segments of any dexel
(for all three grids) in the nail model that need to be changed.
The intersections are performed individually for each of the
three dexel grids to take advantage of memory closeness. The
calculations performed by the intersectors are based on floating-
point calculations. As stated above, the engagement simulation
was investigated for optimization potential. In the investigated
use case, the order of magnitude between tool size and cutting
precision is very different (a big tool and compared to a small
nail model), leading to a vast amount of intersection calculation

Fig. 2. Simplified blade geometry (a) and three-dimensional dexel model (b)

per cut. A speed-up was reached using parallelization conclud-
ing the bottleneck remaining in access operations and therefore
out of scope for quantum-based optimization.

2.2. Classical modal analysis

The FE workflow is performed for each IPW in subsequent
calculations. Starting after the dexel-based engagement simu-
lation in CAM, the main steps are IPW conversion from dexel
to solid, meshing process, and the execution of modal analysis.
Considering the condition for quantum acceleration, the work-
flow was analyzed step by step both in terms of computational
time and with regards to extract numerical problems that can
be transformed in quantum algorithms. The conversion steps
from the dexel representation to the solid geometry and the
meshing process consumed the most time. However, the conver-
sion and meshing processes are highly affected by internal soft-
ware algorithms and were therefore not focused subsequently.
In contrast, the step ’modal analysis’, i.e. solving the eigenvalue
problem, is a well-known mathematical numerical problem and
therefore found to be suitable for computation with quantum al-
gorithms. Within the classical step ’modal analysis’, the equa-
tion of motion for a free and undamped system is consulted in
the physical domain on a local simulation computer. Here, the
mass matrix and the stiffness matrix are extracted for each re-
spective IPW. With the equation of a harmonic oscillation and
the second derivative of the harmonic oscillation, the equation
of motion can be transformed into an eigenvalue problem. By
knowing eigenvalues and eigenvectors (and damping ratio), the
dynamics for each simulated IPW can be described in the state
space representation, usually visualized as FRF. The results can
be further utilized for the calculation of stability diagrams for
optimization of the spindle speed to avoid process vibrations. In
the future approach, the quantum-based modal analysis will be
connected to a QC via a new microservice in the batch layer,
within the Core Domain of the framework dPart® [6]. It is
planned, that the calculated solutions can be sent back to the lo-
cal simulation computer via the mentioned microservice. There,
the results can be further utilized as described above for opti-
mization of the spindle speed to avoid process vibrations.
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3. Quantum based modal analysis

In the beginning, the calculation of a simplified blisk blade
geometry was started. The selected geometry and simulation
parameters are shown in Figure 2 (a) and Table 2. Despite the
highly simplified geometry, the matrix size of 1005 by 1005 was
not computable with existing quantum hardware. Therefore, the
solution of the modal analysis and the eigenvalue problem using
quantum algorithms was investigated within this paper based on
a simplification approach of linear coupled oscillators. The cor-
responding matrix was of size 2N × 2N , where N is the number
of oscillators. However, this approach can be scaled up again as
soon as the appropriate quantum hardware is available.

3.1. Linear coupled oscillators

The system of linear coupled oscillators (Fig. 3) was studied
with the aim of simulating its behavior under the influence of
an external force F = ( f0, . . . , fN−1)T . This is described by its
equation of motion (Eq. 1), where X = (x0, . . . , xN−1)T contains
the displacement xi of the N oscillators, M is the mass matrix,
K the stiffness matrix, and C the damping.

MẌ(t) + KX(t) +CẊ(t) = F(t) (1)

This equation can be solved by switching into frequency space
using X(t) =

∫
X(ω) exp(iωt)dω, thus resulting in

X(ω) = χ(ω)F(ω), (2)

where the frequency dependent response function χ(ω) between
the amplitude of the applied force F(ω) and the displacement
X(ω) is introduced

χ(ω) =
∑

k

M−
1
2 VkV†k M−

1
2

−ω2 + ω2
k + iω(αω2

k + β)
, (3)

with the eigenfrequency ωk and the eigenvector Vk for the ma-
trix M−

1
2 KM−

1
2 . The damping is represented by the two coef-

ficients α and β, based on Rayleigh Damping and depending
on experimental measurements [13]. A full description of the
response function depends on the accurate computation of the
eigenfrequencies and eigenvectors. Those can be computed us-
ing classical algorithms within polynomial time (O(N3) with
the size of the Matrix N [14]). The big drawback of those al-
gorithms is, that they have to deconstruct an equation of vec-
tors into their components and solve those one at a time. A
quantum system can be described directly with linear alge-
bra, which makes it optimal for linear algebra computations

Fig. 3. Linear coupled oscillators as a toy model. The system is fully described
by the displacement xi of the i-th oscillator, its external forces fi, its mass mi
and the stiffnesses {ki, ki+1} of the surrounding connections.

Table 2. Geometry and simulation parameters

Parameter Value

Blade height h 60 mm
Chord length l 45 mm
Blade twist φ 0 deg
Blade profile DCA
Material Ti-6Al-4V
Damping 0.2 %
Mesh size 0.8 mm
Number of Modes 20
Total nodes 536
Matrix size 1005x1005

in which quantum states represent vectors and quantum oper-
ations or gates represent matrices. However, efficient methods
are needed to prepare those quantum states and gates without
losing any speed-up. One example of quantum algorithms that
suits the problem described above is the quantum phase esti-
mation (QPE), which can be used to estimate eigenvalues and
eigenvectors and promise exponential speed-up in comparison
to classical algorithms [15, 16]. This speed-up is only given for
a certain family of problems, as it depends on assumptions. This
exact algorithm is further described in subsection 3.2.

3.2. Quantum phase estimation

QPE is a central quantum algorithm that was introduced by
Kitaev [15]. Its main function is to find the eigenvalue of a
unitary operator U, which finds use in many physics [17] and
chemistry [18] problems as well as in Shor’s algorithm [19]. In
the standard setting for QPE, an eigenstate |Ψ⟩ of the unitary
U is given and, in addition, the unitary U is given in the form
of a quantum gate. More precisely, the goal is to estimate the
phase φ ∈ [0, 1) of the eigenvalue e2πiφ associated with |Ψ⟩. For
a classical algorithm, this task scales exponentially with respect
to the number of qubits necessary to represent U |Ψ⟩.

It is further possible to use QPE to determine the eigenval-
ues of a hermitian matrix H if there exists a quantum circuit for
U = e2πiH . This is not always possible without losing all quan-
tum speed-up. However, QPE can be used without losing the
quantum advantage as long as the matrix can be decomposed
in a linear superposition of elementary quantum gates [20] or if
the rule of how to compute the entries of the matrix is known

|0⟩⊗m H

|0⟩⊗n |Ψ̃⟩ U2m−1

. . .

U20

QFT† |2mφ⟩

|Ψ⟩

Fig. 4. The QPE starts with the preparation of the eigenstate
∣∣∣Ψ̃
〉

in the lower
register. This is followed by a series of controlled U, which prepares the de-
sired phase φ. The inverse QFT probes for any possible phase, such that the
eigenvalues φ and true eigenstates |Ψ⟩ are stored with high probability in the
two quantum registers.
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[21]. The central element of the original version is the quantum
Fourier transform (QFT) [22, 23, 24, 25] as shown in Fig. 4.
For a detailed description of the QPE algorithm, see the studies
of Cleve et al. (1998), Nielsen et al. (2010), and Scarani (2012)
[16, 25, 26].

In its original version, QPE needs a register of m ancilla
qubits in which it stores the phase with high probability. This
phase can only be exact up to a finite error ε < 2−(m+1) due
to its binary representation [25]. The probability distribution in
the ancilla register is peaked around the desired phase φ and
its width increases with the error ε. The minimum probability
to measure the correct phase never falls below 4/π2 [16]. The
time efficiency of the algorithm depends mostly on the number
of queries of U, which scales as O(ε−1) while the number of ad-
ditional operators in the QFT scales as O(

(
log(1/ε)

)2). Hence,
the algorithm scales inversely proportional with respect to the
error ε. Notice that this is the scaling obtained by assuming
that the unitary Uk is implemented by applying the unitary U
k times. The scaling further reduces if there exists a quantum
circuit for the direct implementation of Uk which scales simi-
larly, in the number of gates, as U. This makes it an algorithm
that scales in the number of Uk calls logarithmically with the
inverse of the error O(log(1/ε)) and hence, the QFT dominates
the computation time [16].

A basic assumption in QPE is that one is capable of imple-
menting the unitary operator U and preparing a state

∣∣∣Ψ̃
〉
, which

overlaps significantly with the eigenstate |Ψ⟩, within polyno-
mial time on a quantum device. As already mentioned, this is
not always the case for arbitrary U = eiH . However, if H can be
decomposed into a superposition of elementary gates, one can
use a truncated Taylor Series expansion to bypass the exponen-
tial function [20]. Another case in which the implementation
of the unitary U is efficient is when the matrix H has sparsity
properties and its entries can be efficiently evaluated [27]. The
preparation of the eigenstate |Ψ⟩ is also a non-trivial task that
needs to be accomplished efficiently in the number of quantum
gates to preserve the speed-up of the algorithm. Methods to pre-
pare an approximate eigenstate efficiently are known [28, 29].
Here, a good approximation of

∣∣∣Ψ̃
〉

is sufficient due to the prob-
abilistic nature of the algorithm, which suppresses small errors.
The desired eigenvalues φ are hidden in the ancilla register as
superposition (see Fig. 4). Extracting them is a non-trivial prob-
lem, as a measurement destroys the superposition and yields
only one eigenvalue with a certain probability. QPE amplifies
the probability of measuring the true eigenvalues, which can be
picked out by repeating the whole process multiple times. The
corresponding true eigenvectors |Ψ⟩ are in the bottom register
(see Fig. 4) and can be further used in other algorithms such as
the Hadamard test [30] or extracted by measuring it.

4. Quantum emulation as proof of concept

As proof of concept, we emulated the QPE for a system of
N = 4 linear coupled oscillators of equal mass m = 4 kg, which
are connected by springs with stiffness k = 1 N m−1, on a clas-
sical computer. The resulting FRF is shown in Fig. 5 for an
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Fig. 5. Numerically simulated and quantum emulated frequency response func-
tion for a system of 4 linear coupled oscillators with mass m = 4 kg and stiffness
k = 1 N m−1 as proof of concept.

arbitrarily chosen pair of input and output nodes (2 and 0). In
here, the damping was neglected. The blue graph represents the
result of the numerically solved eigenvalues, eigenvectors of the
matrices and vectors, and their FRF. Conversely, the orange one
shows the previous emulation of the FRF based on the presented
circuit in Qiskit on a classical computer. The accuracy of the
quantum emulation depends directly on the number of qubits
and with it on the computation-time of the algorithm. To clas-
sify the readiness of the individual simulation steps, it should be
noted that the steps of state preparation, gate preparation, and
data extraction are implemented, but work inefficiently in terms
of computation time. An improved implementation is currently
being worked on.

5. Summary & Outlook

The presented paper introduces an optimization approach
for a dynamics milling simulation based on QC algorithm. The
FEM simulation workflow of the dynamics simulation of multi-
axis milling of thin-walled aerospace components, like inte-
gral compressor rotors, was presented, and individual steps of
it were evaluated for quantum readiness. The FE modal anal-
ysis was selected as a suitable use case. A scalable quantum
algorithm utilizing QPE was presented based on the minimum
value problem of linear coupled oscillators. Nevertheless, the
state-of-the-art quantum devices, so-called noisy intermediate
scale quantum (NISQ) devices, are characterized by non-trivial
qubit numbers (∼ 100), but also by relatively high error rates
between 10−2 and 10−3 in the implementation of gates and mea-
surements [31]. This limits the depth of the quantum circuit that
can be simulated on current quantum hardware without having
a large error on the output to a few thousand gates [32]. QPE
generally requires high-depth circuits for exploiting its full po-
tential, and as such it is not thought to be an algorithm that is
suited for NISQ devices, but it requires a full fault-tolerant QC
[33]. However, further developed algorithms can be used to es-
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timate the phase even on NISQ technology using the evolution
operator for various times [34, 35].

Continuous further development of the presented quantum
algorithm will take place. The main emphasis will be on trou-
bleshooting and debugging specific parts of the algorithm. Ad-
ditionally, efforts will be directed toward scaling up the min-
imum value problem of linear coupled oscillators to a three-
dimensional approach. The ultimate goal is to achieve a practi-
cal industrial use case, such as the milling dynamics simulation
of integral compressor rotors like a blisk blade. Moreover, QC
could support more simulations in the future in the manufac-
turing industry. For this purpose, a backend, to fill the interface
between classical simulation and QC, will be developed in the
dPart® framework.
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