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Abstract

Quantum computing offers a promising avenue to
reduce growing machine learning model complexity
as required in large language models and simulation
models for weather forecasts, financial forecasts, or
engineering. Graph neural networks are a particular
class of machine learning models that have garnered
much attention for their ability to deal well with
structured data. We investigate how to enhance
existing GNNs and find through the inductive bias
that quantum circuits are used best to encode node
features. The proposed Quantum Feature Embeddings
(QFEs) turn raw input features into quantum states,
enabling non-linear and entangled representations. In
particular, QFEs provide normalized, non-redundant
weight matrices in an exponentially larger feature
space and require much fewer qubits than fully
quantum graph neural networks. On standard graph
benchmark datasets, we showcase that for the same
parameter count QFEs perform better than their
classical counterpart, and are able to match the
performance of an exponentially larger model. Finally,
we study the potential benefit of using a hybrid quantum
graph neural network over a classic alternative on a
concrete use case, laser cutting. We find that the
proposed model has the performance and thus the
near-term potential to uplift these business applications.
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1. Introduction

Machine learning (ML) models have become
increasingly complex, with vast amounts of data
and parameters, requiring significant computational
resources for training and inference (Patterson et al.,
2021; Touvron et al., 2023). As a consequence,
the practical implementation of these models on
traditional computing platforms often becomes
infeasible due to resource limitations. However,
the emergence of quantum computing offers a

promising avenue to address these challenges, as it
has unlocked unprecedented computational capabilities
to solve previously infeasible problems such as the
integer factorization problem (Shor, 1999). These
advancements have inspired researchers to explore the
integration of quantum techniques in the realm of ML
to mitigate the complexity of large-scale models (Beer
et al., 2020; Lloyd et al., 2020).

The primary objective of this paper is to investigate
the application of quantum computing to reduce the
complexity of ML models, with a particular focus on
Graph Neural Networks (GNNs). GNNs have garnered
substantial attention due to their ability to generalize
across various model classes and exhibit exceptional
performance in tasks involving graph-structured data
(Xu et al., 2019). By leveraging the unique
characteristics of quantum computing, we aim to
accelerate and enhance the capabilities of GNNs.

Rather than pursuing a fully quantum approach,
which faces challenges related to scalability and
hardware constraints, we propose a hybrid architecture
that combines classical and quantum computing
paradigms (De Luca, 2022). This approach harnesses
the strengths of both classical and quantum systems,
offering a practical solution that can deliver notable
performance improvements without sacrificing
scalability. In this paper, we will explore the
motivation behind integrating quantum computing
with GNNs, identifying the areas where quantum
acceleration can be most effective. Furthermore, we
demonstrate how a hybrid architecture can be composed
and provide empirical evidence of its enhanced
performance compared to conventional, purely classical
GNN models. By focusing on the construction of
quantum-enhanced GNNs, we aim to pave the way for
more efficient and powerful ML models capable of
addressing complex real-world problems.



2. Related Work

Quantum machine learning (QML) approaches can
be categorized into two main types: fully quantum
computing-based methods and hybrid approaches that
combine quantum computing components with classical
neural networks. In general, a QML model which
works with classical data requires three distinct blocks
(Benedetti et al., 2019): data encoding, a variational
circuit, and the measurement stage. The data encoding
maps classical input data onto qubits, making it
accessible to the quantum circuit. The variational
circuit incorporates tuneable operations that adjust its
parameters to fit the desired function. Finally, the
measurement stage transforms the quantum state back
into a real vector. The exact implementation of
each component is open for exploration. Schuld and
Petruccione, 2021 propose optimizing the measurement
basis to learn functions, while Lloyd et al., 2020
suggests optimizing the variational circuit to maximize
the distance between classes of points for classification
tasks. Here, Lloyd et al. demonstrate the accuracy of
their approach by replacing the fully connected layer of
a convolutional neural network. Both approaches enable
the realization of parameterized, optimizable functions
on quantum circuits.

In analogy to deep learning, deep QML models
are increasingly investigated. There exists however
a major roadblock, as revealed by McClean et al.,
2018. The problem of barren plateaus in deep, densely
connected quantum circuits leads to vanishing gradients
(Hochreiter, 1998) and hence a non-optimizable
function. To address the challenge of barren plateaus,
Beer et al., 2020 introduce a deep learning-inspired
approach that restricts entanglement between qubits,
allowing for the training of deep quantum neural
networks. Beer et al. show that deep quantum neural
networks can be trained accurately even with limited
data, as confirmed by Caro et al., 2022, who provide
an upper bound on the generalization error of QML
models, which show that QML models work well with a
relatively small amount of data.

Finally, specialized QML methods have been
developed for structured data such as images and
graphs. In this paper, our focus lies on quantum
graph neural networks (QGNNs). Verdon et al.,
2019 provide a general formulation for QGNNs,
which involves encoding the feature and adjacency
matrices and processing them with a parameterized
unitary, realizing convolutional and recurrent variants
with appropriate constraints. Most closely related
is the work of Chen et al., 2021, who propose a
hybrid quantum-classical graph convolutional network,

suggesting the replacement of the fully connected layer
with a parameterized quantum circuit. However, the
exact benefits of this augmentation in the architecture
are not fully clear. Our objective is to identify the
specific parts of a graph neural network that benefit most
from QML by analyzing the inductive biases introduced
by QML methods.

3. Quantum Feature Embeddings

Consider a homogeneous graph with N nodes and
D node features, represented by a feature matrix X ∈
RN×D and an adjacency matrix A. Each row vector x(i)

of the feature matrix X corresponds to the input features
of node i. The graph has a label Y ∈ Y to be predicted.
For binary classification, Y is defined as {0, 1}, while
for tasks some tasks we may be interested in node-wise
labels, e.g. a vector from Y := RN .

Given a dataset of M labeled graphs
{Xi, Ai, Yi}Mi=1, our objective is to fit a parameterized
function fθ by minimizing the loss between the
predicted label fθ(Xi, Ai) = Ŷi and the true label Yi,
achieved by updating the parameters θ. We focus on
GNNs as the class of parameterized functions fθ.

Graph Neural Networks (GNNs) are a powerful class
of machine learning models designed to handle data
structured as graphs (Wu et al., 2020; Zhou et al., 2020).
GNNs typically consist of three main components:
feature embedding, message passing, and decoding. In
the feature embedding phase, graph nodes and edges are
mapped to high-dimensional feature vectors, capturing
their characteristics and relationships, shown on the left
of Figure 1. During the message-passing phase, GNNs
iteratively aggregate and propagate information between
connected nodes, allowing for the incorporation of
local and global graph information. The message
passing step for a node is shown in the middle of
Figure 1. Finally, in the decoding phase, the learned
representations are used to make predictions or perform
downstream tasks. GNNs have demonstrated impressive
performance across various domains, including social
network analysis and drug discovery.

In our proposed Quantum Feature Embedding
(QFE) framework, we specifically focus on the
feature embedding stage as the ideal application of
QML. Traditional methods often employ multi-layer
perceptrons (MLPs) as node embedders, which are
universal approximators capable of representing any
function f , as proven by Hornik et al., 1989. Often, this
leads MLPs to overfit rather than generalize. To address
this, special neural network architectures constrain the
set of learnable functions, encoding an inductive bias
that specifies desired properties of the function.



Figure 1: GNN flow: Node vectors are embedded individually by ML/QML component. Message Passing updates
node embeddings considering features of the neighborhood. Decoder predicts labels from embeddings.

3.1. Inductive Bias

Inductive bias plays a crucial role in deep learning
by guiding the learning process and influencing the
model’s generalization ability (Battaglia et al., 2018;
Baxter, 2000; Zhang et al., 2021). It refers to the
set of assumptions and biases encoded in the model
architecture and learning algorithms that help it make
predictions and learn from limited data. Inductive bias
can take various forms, such as architectural choices,
regularization techniques, or the use of specific loss
functions. It allows deep learning models to effectively
capture and exploit patterns in data and prioritize
relevant features. For instance, in GNNs, the inductive
bias allows updating node features using neighbors
only, which allows the GNN to fit robust functions that
generalize beyond the training dataset.

Our primary objective is to explore the inductive
biases introduced by QML, particularly in relation to
the feature embedding stage of GNNs, and discover
the potential benefits of using Quantum Feature
Embeddings instead. Here, we will be analyzing
parameterized quantum circuits, described through
their unitary operator U(θ), which transforms a
quantum state |x⟩ using specific gates and parameters.
The unitary operator is represented as U(θ) =
Un(θn)Un−1(θn−1) . . . U1(θ1), where each Ui(θi) is a
quantum gate with its associated parameter θi, e.g. a
rotation around the X-axis by degree θi. Goto et al.,
2021 show that parameterized quantum circuits are
also universal approximators and hence equivalent in
that regard to conventional MLPs. A parameterized
unitary is the quantum equivalent to the linear weight
multiplication Wx in a classical MLP, but encodes
additional constraints that we analyze now.

3.2. Quantum Feature Space

Quantum circuits have an exponentially sized feature
space in relation to the number of qubits. Consequently,
the dimensionality of the data representation |x⟩
grows exponentially whilst the required amount of
gates/parameters scales only polynomially. In contrast,
the hidden representation of MLPs depends linearly on
the number of neurons. Hence, to reproduce the feature
space of a quantum circuit with an MLP, exponentially
more neurons and parameters are required, which makes
both computation and optimization challenging.

In addition, quantum states and transformations have
the property of normalization, since unitaries are norm
preserving, i.e ||U |x⟩ || = || |x⟩ ||. Normalization
ensures similarity in scale and prevents a single feature
with a larger magnitude from dominating the learning
process. It improves the stability and convergence of
gradient descent by providing a balanced landscape,
as different scales among features can destabilize
optimization (Ioffe and Szegedy, 2015). Finally,
normalization reduces the impact of outliers, enhancing
the model’s robustness and reducing overfitting. The
intermediate and final state vectors in QML models are
inherently normalized, ensuring reliable computations
without using costly batch normalization.

3.3. The Unitary Prior

QML models leverage unitaries, which are linear
operators in the quantum state space, further constrained
to model only invertible transformations. They possess
several desirable properties, including:

1. Orthonormal Basis: The columns/rows of a
unitary matrix form an orthonormal basis of the
complex vector space. Additionally, U has full
rank, ensuring a rich representation capacity.



Figure 2: QFE-GNN framework with quantum feature embeddings: the node features of the input graph are embedded
with a QML model (top) instead of an MLP (bottom), before being passed to a classical GNN.

2. Embedding Uniqueness: Unitary transformations
are bijections. Consequently, it produces unique
embeddings for unique inputs and covers the
entirety of the output space.

In contrast, the linear weight matrices in traditional deep
learning are not of full rank and contain redundancies,
exploited for compression (Nakkiran et al., 2015) or
acceleration (Denton et al., 2014). However, for feature
embeddings, low-rank weight matrices and thus linear
dependencies between embedded vector elements, is
undesirable, as the node feature embedding aims to
automatically learn relevant, not redundant features
from the input vector of each node. When using a
classic MLP, the optimization process based on gradient
descent leads to a non-full-rank weight matrix W . In
contrast, QML introduces an inductive bias so that the
learned embedding must be linearly independent.

Furthermore, by representing only bijective
functional mappings, the embedded representations of
nodes can be uniquely mapped back to their original
input features. This allows for a clear understanding of
how the embedded representations relate to the original
data. Bijectivity helps in preserving the richness of the
node information during the embedding process. By
ensuring that the embedding function is a one-to-one
mapping, bijectivity prevents information loss or
distortion. In GNNs, accurate representation of the
nodes and their relationships is crucial for capturing the
underlying graph structure. Non-bijective embeddings
may result in the collapse of distinct nodes into the same
representation, leading to the loss of discriminative
power and potentially compromising the performance
of downstream components. Overall, QML allows

only learning unique, non-redundant representations for
the node input features and thus ensures faithful and
informative node embeddings in GNNs.

3.4. Framework

We introduce Quantum Feature Embeddings (QFEs)
to enhance learned feature representations in graph
neural networks (GNNs) using quantum machine
learning. QFEs are integrated into a hybrid framework
that combines quantum-inspired feature embedding
with classic ML-based message passing. The inductive
biases leading to improved feature representations are
present for all parameterized quantum circuits and allow
to flexibly instantiate different architectures as QFEs.

The differences between a traditional GNN and our
proposed QFE-GNN are illustrated in Figure 2. We are
given an input graph with N node vectors, representing
a 3D laser cutting object for example. The QFE-GNN
uses a QML model to embed node features, which are
processed further by a classic GNN performing feature
updates based on node neighborhood. The hybrid
architecture combines the benefits of both classical and
quantum approaches, allowing for improved feature
extraction and representation learning compared to the
classical MLP-powered approach.

The QFE-GNN framework is hardware efficient, as
it requires relatively few qubits compared to a fully
quantum GNN. QFEs embed individual node vectors
only and not the entire graph, thereby requiring only
small quantum hardware. Overall, by incorporating
QFEs into a classic GNN architecture, we match
the advantages of quantum machine learning by
placing it in the best-suited role, feature embedding.



Accommodating hardware constraints, QFE-GNN aims
to improve the performance and efficiency of graph
representation learning in various domains.

3.5. Instantiation

We now present an architecture for Quantum Feature
Embeddings to instantiate a QFE-GNN. We describe the
key components necessary for a QML model processing
classical data as described by Benedetti et al., 2019.

Input Encoding: First, the real-valued input vector
x = (x1, . . . , xD) must be mapped onto quantum state
|x⟩ for the QML model.We want to make use of the
exponential-sized Hilbert space and hence use angle
encoding with D qubits for D input features. Each
qubit is subjected to a rotation (e.g. around the Y-axis),
defined by the rotation matrix:

URY (xi) =

(
cos(xi

2 ) − sin(xi

2 )
sin(xi

2 ) cos(xi

2 )

)
,

where the angle xi is the normalized raw input data.
The resulting quantum state is given by ϕangle(x) =
⊗D

i=1URY (xi) |0⟩ , and is an exponential size vector in

C2D . Angle encoding exhibits operational advantages
by requiring only a single sequential gate per qubit.

Parameterized Gates: Once the input data x is
embedded into a quantum state |x⟩, we follow the
design paradigm by Lloyd et al., 2020 and optimize the
parameters of the variational circuit. We use a standard
architectures that involves alternating parameterized
rotations and entanglement of qubits using CNOT gates
(Chen et al., 2021; Selig et al., 2021).

The parameterized rotation operation, denoted as
URX(θ), acts on each qubit and is defined as:

URX(θ) =

(
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

)
.

By combining these rotation operations, we can
construct a unitary operator for the entire layer
as URX -Layer(θ) = ⊗D

i=1URX(θi). Subsequently,
we introduce an entanglement operation to establish
interactions between the encoded values on the qubits,
by entangling neighboring qubits with Controlled-NOT
(CNOT) gates. We repeat the rotation-entanglement
procedure twice to limit circuit depth and avoid barren
plateaus (McClean et al., 2018), for a total of 2D
rotations, and O(D) parameters.

Measurement: Finally, the processed data in form
of a quantum state needs to be transformed back into a
real vector to be processed further with the classic GNN.
To this end, we use a fixed observable and measure each

Figure 3: Full QML Model consisting of input
encoding stage (left), the variational, parameterized
circuit (middle) and measurement stage (right).

individual qubit using the Z basis with M0 = |0⟩ ⟨0| and
M1 = |1⟩ ⟨1| to yield a real vector x′, which is then used
as the node embedding for the GNN.

Full Model: The complete proposed QML
architecture is displayed in Figure 3. Each node has a
feature vector x ∈ RD. The corresponding embedding
circuit uses D qubits in total which are in the initial
state of |0⟩. The classic data is encoded as angles on
the RY rotations, represented by the first purple blocks
on the left with a gate depth of one. Next follows
the variational circuit consisting of a parameterized RX

rotation followed by CNOT entanglement with the direct
neighbors. The circuit is repeated twice, which is
the setup with the best observed empirical accuracy.
The processed quantum state is then Z measured for
each individual qubit. In the end, one obtains an
QFE-embedded latent node vector x′ ∈ RD which is
now ready for further processing by the classic GNN.

3.6. Model Training

The training of the QFE graph neural network is
based on a chosen loss function, e.g. the MSE for
regression or cross-entropy for classification. The loss
evaluates the network’s output and computes gradients
with respect to the parameters. In the classical GNN
component, the gradients are obtained with standard
backpropagation. This allows the GNN to learn and
refine its parameters based on the error signal provided
by the loss function. Simultaneously, in the quantum
part of the network, the embedding parameters that
encode classical features into quantum states need to be
optimized. The parameter-shift rule is commonly used
to estimate gradients by evaluating the quantum circuit
with slight perturbations in the embedding parameters
(Crooks, 2019; Schuld et al., 2019). The resulting
change in loss gives an accurate estimate of the gradient.
These gradients are then used to update the embedding
parameters through gradient descent (Bottou, 2010).
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Figure 4: [Higher is better] Accuracy on PROTEINS (left) and ENZYMES (right) datasets with QFE and MLP
embedding. The QFE outperforms MLP-D and matches the performance of the exponentially larger MLP-2D.

4. Experiments

In this section, we evaluate the Quantum Feature
Embeddings (QFEs) on both synthetic and real-world
graph datasets. We compare the performance of our
introduced QFE architecture, which uses D qubits
for D input features, against a classic Multi-Layer
Perceptron (MLP)-based node embedder. We consider
two variations of the MLP: MLP-D with D hidden
neurons (equally many parameters as QFE), and
MLP-2D with 2D exponentially many neurons ( same
hidden dimensionality).

Each embedding is combined with three popular
message-passing architectures: Graph Convolutional
Network (GCN) (Welling and Kipf, 2016), GraphConv
(Morris et al., 2019), and Graph Attention Networks
(GAT) (Velickovic et al., 2017). These architectures
provide different approaches for aggregating node
activations and have been widely used in graph machine
learning. We implemented all Hybrid Graph Neural
Networks in Python and used Pennylane (Bergholm
et al., 2018) to simulate the QML model.

4.1. Real-World Datasets

In order to evaluate the performance of quantum
embeddings in real-world scenarios, we consider
graph/node classification or regression tasks on
real-world datasets. We utilize the PROTEINS (Dobson
and Doig, 2003) and ENZYMES (Schomburg et al.,
2004) graph classification datasets from the TUDataset
of Morris et al., 2020. These datasets encode proteins
as connected amino acids, and the task is to classify
them as enzymes or not (PROTEINS) and to distinguish
between six possible catalyzed chemical reactions
(ENZYMES). Both benchmarks provide midsize graphs
with low dimensional node features and allow to train
of a QFE-GNN within a reasonable time frame (less
than a week). Since both datasets involve classification,
we trained the networks using the cross-entropy loss.

After running and evaluating all models with
cross-validation, we obtain the following results.
Figure 4 depicts the accuracy of all QFE and MLP
GNN combinations on PROTEINS and ENZYMES.
On the PROTEINS benchmark, MLP-D significantly
underperforms the other two methods, achieving an
accuracy of 0.61. Both MLP-2D and QFE achieve
nearly identical rounded test accuracies of 0.68, with
a slight advantage for MLP-2D. Similar observations
hold when using the GraphConv layer as the GNN.
Notably, when employing the GAT layer, the QML
model outperforms both MLPs, achieving an overall
accuracy of 0.70. The best-performing model is the
combination of GraphConv and MLP-2D, with a close
second place for GraphConv and QFE. As expected,
GCN performs relatively poorly due to its limitations
highlighted by the authors of GraphConv Morris et al.,
2019. Given that identifying unique substructures is
crucial in protein analysis, GraphConv capitalizes on its
strengths, surpassing the graph attention network. These
strengths become particularly relevant when addressing
laser cutting and thermal simulation tasks.

A similar pattern is observed on the ENZYMES
dataset. Once again, MLP-2D and QFE perform
comparably well, while MLP-D demonstrates weaker
empirical performance. This trend persists across all
three GNN layers when employing cross-validation. It
appears that QML can achieve performance on par with
MLPs using exponentially fewer parameters on this
benchmark as well. GraphConv with MLP-2D emerges
as the top performer, followed by GraphConv with
our QML embedding. The MLP struggles to achieve
good performance with only linearly many parameters,
whereas the QML model excels.

In conclusion, our empirical evaluation demonstrates
the potential of quantum embeddings in graph
classification tasks. The results consistently show that
the QFE-GNN outperform their classical counterparts
using the proposed parameterized quantum circuit
design. The findings highlight the advantage of



PROTEINS ENZYMES

No Noise Noisy No Noise Noisy

GCN 0.68 0.64 0.23 0.15
GraphConv 0.70 0.60 0.26 0.22

GAT 0.70 0.59 0.24 0.19

Table 1: [Higher is better] Accuracy of a simulated
perfect quantum circuit versus a simulated noisy circuit.

leveraging the inductive bias provided by quantum
circuits in capturing complex graph structures. These
promising results open up exciting possibilities for
applying quantum embeddings to various domains.

4.2. Noisy Quantum Feature Embeddings

Current day quantum hardware is considered to be in
the noisy, intermediate scale quantum era, widely known
as NISQ. QFEs require only few parameters/qubits,
and are well suited to the scale constraints of modern
hardware. In the following, we will examine the effect
of hardware noise. To this end, we use the trained
hybrid models from the previous section, but in place
of a perfect simulator use a simulator of an IBM Falcon
r4T device and the device specific noise.

Table 1 shows the results of this experiment. Across
all benchmarks, the performance including hardware
noise lies slightly below the perfect simulation. Indeed,
noise may affect the precision of the, especially when
using fewer qubits. To remedy this problem, integrating
the noise into the training process is a potential avenue
of improvement, as using noise for data augmentation
in neural network training is often beneficial to training
(Shorten and Khoshgoftaar, 2019).

4.3. Time and Resource Consumption

Compared to traditional ML models, simulating
QML models has significantly longer training times.
Table 2 shows that simulating QML models is very
time-consuming. For ENZYMES and PROTEINS, to
process a graph in parallel, we require on average
40 nodes ∗ 3 features = 120 qubits, and a total
of 600 gate operations per graph with circuit depth
of 5. In contrast, the classic model MLP-2D needs
21.120 floating point operations. As of now, IBMs
most advanced 400 qubit processor is said to have 15k
CLOPS (circuit layer operations per second). Ignoring
all possible overheads, we obtain for the training of the
QFE-GNN on the PROTEINS dataset with 1000 graphs∗
600 gates ∗ 50 epochs with 15 kCLOPS/s compute
power an estimated run time of 33 minutes.

ENZYMES PROTEINS
QML training run 2:20 h 3:10 h
ML training run <0:01 h <0:01 h
QML total time 35:00 h 46:00 h
ML total time 0:02 h 0:03 h

Table 2: [Lower is better] Training time of QML
and ML models per training run and total time for
cross-validation.

On the economic side, GPU hardware is currently
magnitudes cheaper than quantum hardware. It remains
to see, whether affordable quantum hardware and
thus economic viability of QFEs will be achieved
in the long term. Independent of specific hardware
costs, the theoretical complexity of both models can
be determined. The QML model needs only a
linear amount of gates O(D), whereas the MLP
with exponentially more neurons that matches the
performance, hence requiring exponentially many
operations O(2D). This exponential relationship bodes
well for the QFE approach. With increasing amounts
of data that can be handled by quantum hardware, the
balance tips further in favor of the quantum machine
learning approach due to the exponential scaling.

4.4. Case Study: Laser Cutting

Finally, we analyze the potential of a QFE-GNN
on a concrete use case, laser cutting. Laser cutting is
a technology that enables to precisely and flexibly cut
fine geometries on thin metal sheets and is an important
part of automotive industrial production (Thomas et al.,
2011). Currently, laser cutting machines operate fully
automated, however they cannot operate autonomously
and miss out on a lot of economic potential by being
able to operate alone through the night. Due to the heat
induced by the laser there is thermal expansion, which
can cause the machine to be blocked and require human
intervention. Simulating the induced heat accurately
allows to enact appropriate countermeasures and prevent
production standstills.

The state-of-the-art approach for heat distribution
simulation involves using Partial Differential Equation
solvers (Akhtar et al., 2014). However, these solvers are
computationally intensive and slow when applied to the
entire cutting process. Instead, Graph Neural Networks
(Han et al., 2021; Pfaff et al., 2021) have demonstrated
their potential as powerful alternatives to PDE solvers.
The cut geometry, a mesh composed of many small
simple shapes, is processed by a GNN, which learns to
simulate the thermodynamics of laser cutting.

A dataset is necessary for training purposes, and we



(a) 2-D geometry of a straight
cut into a metal plate.

(b) Vertically lifted 3-D
geometry from the 2-D sketch.

(c) Mesh constructed from the
provided 3-D geometry.

(d) Simulated temperature on
the mesh during laser cutting.
Predictions by the QFE-GNN.

Figure 5: From geometry to simulation on a mesh. Steps involved in simulating laser cutting.

MLP-D MLP-2D QFE

GCN 0.54 0.50 0.50
GraphConv 0.56 0.55 0.39

GAT 0.34 0.29 0.21

Table 3: [Lower is better] MSE after 20 training epochs
on the LASER dataset.

generate this dataset using the PDE solver from Matlab.
The simulation process is outlined in Figure 5. We test
feasibility by modeling the simplest shape, straight cuts
in a rectangular metal sheet, which we represent as a 2D
geometry (Figure 5a). To extend the sheet geometry into
3D, we introduce a parameterizable height (Figure 5b),
and then convert it into a mesh graph that is utilized by
the GNN (Figure 5c). By training on these graphs, the
GNN learns to predict the thermodynamics and simulate
the heat spread during the cutting process (Figure 5d).

In total, we generate 60 different geometries. Each
geometry is a graph formed by the nodes and edges
of the mesh (see Figure 5c). On average there are
900 nodes, where each node vector carries information
about X/Y/Z coordinates, current temperature, thermal
conductivity and more (11 qubits per node). We embed
each node vector with QFE/MLP respectively and use
the combined GNN to predict the nodal temperature at
the next timestep with 60 timesteps per simulation.

To evaluate the performance, we again test all
hybrid/classical GNN variants of this dataset. The
results are presented in Table 3. Among all the GNNs,
the QFE-GNN variant performs the best, demonstrating
the advantages of incorporating quantum elements in the
appropriate sections of GNNs. Ultimately, the hybrid
graph attention network with QFEs emerges as the
top-performing model. It achieves an impressive MSE
of 0.21 and outperforms other GNN and embedding
configurations. By leveraging graph attention, this
network automatically determines the most relevant
nodes, especially when provided with high-quality

representations from QFEs. By replacing the embedder
component in this network with a QML-based solution,
we achieve the lowest training error while utilizing
exponentially fewer parameters compared to competing
models. This empirical evidence further substantiates
the efficacy of our QML models and demonstrates their
advantages in real-world applications like laser cutting.

5. Conclusion

This article introduced the concept of Quantum
Feature Embeddings for Graph Neural Networks to
enhance and accelerate classical graph neural networks
using quantum computing. By leveraging the inductive
biases offered by quantum circuits, we propose
the QFE framework for a hybrid quantum-classical
GNN. We showed that by design QFEs produce
informative and distinct embeddings, leading to
improved empirical accuracy of GNN architectures
across various benchmarks. Furthermore, we found that
QFEs achieve comparable accuracy to exponentially
larger embedder models, highlighting the significant
advantage provided by the larger quantum feature space.

To illustrate the utility of QFE-GNNs, we presented
a real-world use case involving laser cutting. The
results showcased how a QFE-GNN could be leveraged
in the near term to accelerate a business application,
thanks to its computational advantages. QFE-GNNs are
a promising tool for addressing real-world challenges
with increased efficiency and accuracy.

In summary, the QFE approach contributes to the
feature engineering and data pre-processing in machine
learning models. We have shown that QFEs can be
used to enhance the processing of graph neural networks
and, thus, convolutional neural networks. They are
applicable to any unstructured input features, as long
as the number of features is close to the number of
qubits that can be processed by the simulation system
or quantum computer. This allows to leverage the
quantum computing advantage on problems that can be
transformed into graph representations with a reduced



set of independent features.

5.1. Future Work

In our future work, we seek to understand the
underlying mechanisms that contribute to the success of
the QFE framework in improving GNN performance.
We assume that exploring the theoretical foundations
and conducting empirical analyses will shed light on
the specific aspects of quantum feature embeddings that
contribute to their informativeness and uniqueness. This
investigation involves examining the impact of different
quantum circuit structures and training strategies on
the effectiveness of QFEs. Furthermore, scaling
the QFE-GNN approach to larger datasets and more
complex graph structures is an exciting avenue for
future research. Exploring techniques for efficient
computation, parallelization, and optimization can
help overcome scalability challenges and enable the
application of QFE-GNNs to real-world problems with
massive graphs. Investigating both the theoretical
underpinnings and scalability will pave the way
for harnessing the full potential of QFE-GNNs and
establishing them as reliable and efficient tools in the
domains of machine learning and graph analysis.
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